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Riemann waves in a weakly non-linear weakly anisotropic elastic material possessing the property of cubic symmetry are considered. 
The elastic potential is taken in the form of a series expansion in powers of the strain up to the fourth order of smallness. Anisotropy 
is represented in this expansion by cubic terms with a small coefficient. With that model, a solution is obtained and investigated 
in the form of quasi-periodic Riemann waves propagating along the principal diagonal of a cube. The characteristic velocities 
are found, the integral curves on the phase plane are constructed, and the direction in which the parameters vary along the integral 
curves, resulting in inversion of the solution profile, is indicated. © 2005 Elsevier Ltd. All rights reserved. 

1. S T A T E M E N T  OF T H E  P R O B L E M .  S P E C I F I C A T I O N  OF 
T H E  E L A S T I C  P O T E N T I A L  

In an elastic medium with elastic potential ~,  continuous solutions of the equations of motion are sought 
in the form of plane Riemann waves. The investigation will be carried out in Lagrangian variables in 
the Cartesian system of the initial state. The axis x3 = x is orthogonal to the wave front and the xl, x2 
axes lie in the plane of the front. Strains are characterized by the components Owi/Oxk (i, k = 1, 2, 3) 
of the gradient of the displacement vector w and are assumed to be small, -~ .  In a plane wave, only 
the components ~ W i / O X  = bli(X , t) vary; the other components aWl~aXe, (c~ = 1, 2) are constant and taken 
to be equal to zero. 

The equations of motion are 

boi ~ ~q) bvi ~ui 
po-~7 = OxOu i, ~ = -~-; i =  1,2,3 (1.1) 

where vi = 3wi/at are the components of the velocity vector, • = p0U is the elastic potential, where U 
is the internal energy per unit mass and P0 is the density of the medium, which, assuming homogeneity, 
is constant and will henceforth be taken to be equal to unity. The entropy in a Riemann wave is assumed 
to be constant, so that • = ~(ui). Since the strains are small, the function • may be represented by a 
series in powers of ui, retaining as many powers of ui as necessary for the effects of the non-linearity 
of the medium to appear. It is well known [1, 2] that to that end it is sufficient to retain fourth powers 
of ui. Because of the non-linearity, purely longitudinal and purely transverse elastic waves become quasi- 
longitudinal and quasi-transverse. In what follows, as more interesting, we will consider only quasi- 
transverse waves in which the variation of the longitudinal component u3 is one order of magnitude 
less than u 1 and u2. This will be taken into consideration in the series expansion of ~. For quasi-transverse 
non-linear waves in an isotropic medium, the essential terms of the expansion of q5 turn out to be 

2 d 2  2 2 h ,  2 2,2 ~is = (I~0 = (U21 + U2) + ~U3 + bu3(ul + u2) + ~ tU l  + u2) (1.2) 

where f, b, d and h are the constants of elasticity of the medium. 
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It was shown in [2] that quasi-transverse waves in a medium with small anisotropy (which is always 
the case in practice) acquire new qualitative properties. For the effects of non-linearity and anisotropy 
to app,ear in their interactions, the terms in the expansion of @ that account for anisotropy must be of 
the same order as the non-linear terms, i.e. of the fourth order in ui. If the aforementioned properties 
of the medium are represented by terms of different orders, the effect of one of them will suppress the 
other. In the case of anisotropy of a general type, the next term in the expansion (1.2) has the form 
g(ui - u:), whereg - c2. This term appears even naturally in an isotropic medium when there is constant 
prestrain in the plane of the wave front. Non-linear waves in such a medium have been studied in 
numerous publications, including [2]; Riemann waves were already described in [3]. 

However, more interest has always been aroused by the appearance of small anisotropy of another 
type. In a medium without prestrain, for example, it may happen that the expansion of the function d> 
contains no terms quadratic in ui, and the anisotropy may than be represented by cubic terms in ui with 
a small coefficient g - e. It turns out that under certain conditions the elastic potential of a medium 
possessing cubic symmetry has such properties. The elastic potential of a cubic crystal has been repre- 
sented [4] by an expansion of up to third powers in the components aij of the Green strain tensor relative 
to axes attached to the axes of symmetry of the crystal. For further analysis, one must transform its 
expression to new axes, rotated through a suitable angle, so that the x3 axis points along the direction 
of propagation of the plane wave, and the strains sii themselves are expressed in terms of the components 
ui. Such a representation has been accomplished [5] for three special directions of motion of the wave: 

along an edge of the cube 

along the diagonal of a face 

&f) 
cub 

= a,@;+ u;) + a2(u;-u;) + pu; + Au; + u@,u; + B2u;) 

along the principal diagonal of the cube 

<P(dm) 
cub = a(u; + u;) + pu; + A(3& - u;) + u3(Bp; + B,u; + B&) 

It is obvious that the function QCr) cub contains on1 
&) 

isotropic terms and is of no interest in the problem 
under consideration here. In the expression for QCub t he terms a2(~~-- s) p u re resenting the anisotropy 
have the same form as in [2,3]. Attention will be confined from now on, therefore, to the case of wave 
motion along the principal diagonal of the cube. In that case, the last two terms will be included in 
the function Qti = @a. Since the anisotropy is assumed to be small, the additional term in the general 
expansion of @, namely, @$), must occur with a small coefficient g - E. Taking into consideration 
that for quasi-transverse waves u3 - a2, only the first of the cubic terms need be retained in the 
expression for aCub . (W As a result, the elastic potential for quasi-transverse waves with small cubic 
anisotropy is 

@ = @p,+g(3u,u;-u;) (1.3) 

Note that if the waves propagate in a direction slightly different from that indicated, new terms may 
appear in the elastic potential, in particular, anisotropic terms quadratic in Ui with small coefficients. 
If the deviations in the direction of propagation of the wave are sufficiently small, one can use the 
representation of CD given by formula (1.3). 

It was shown in [2] that, for non-linear quasi-transverse waves of small amplitude, the variation of 
the longitudinal component u3 may be expressed, using Eqs (1.1) in terms of the variations of the 
transverse components u1 and u2, after which the elastic potential can be written as function of the 
transverse components u1 and u2 only. Since the additional anisotropic term in formula (1.3) does not 
contain u3, the aforementioned property of the function Q remains the same for a cubic crystal as well. 
In quasi-transverse waves, therefore, the elastic potential @ may be replaced by a function H(ur, u2) of 
only two variables, which may be treated as the elastic potential of an equivalent incompressible medium 
in which two purely transverse waves are propagating. The function H(ur, u2) has the form 

H(u,, u,) = $u: + u;) - g(u: + cf;,‘+ g(3z& - u:) (1.4) 
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where f, K and g are constants of elasticity. The coefficient f (which also included the isotropic terms 
of the function O ~  )) has the meanin§ of the squared velocity of a linear transverse wave in an isotropic 
medium. The coefficient ~ = h - 2 b / ( d  - fo) serves as a non-linearity parameter, on whose sign the 
behaviour of the waves depends. The coefficient g - e represents an anisotropy parameter which, by 
altering the numbering of the axes, may always be made positive. 

It is readily shown that the function H(Ul, u2) given by formula (1.4)possesses symmetry: If the ua 
and u2 axes are rotated as a whole through on angle of 2n/3, its form remains unchanged relative to 
the new variables. In addition, it is symmetrical about the ul axis. 

Thus, the system of equations (1.1) now has the form 

bOct ~Ul~ ~Uc~ ~0 a 02H 
~t = Ha[~0x Ot - bx Hal3 = , a , ~  = 1,2 (1.5) 

' ' ~u,~Ouf~ 

where the function H(ua, U2) is given by formula (1.4) and it is assumed that P0 = 1. 

2. T H E  C H A R A C T E R I S T I C  V E L O C I T I E S  AND I N T E G R A L  CURVES OF 
R I E M A N N  WAVES 

We will seek a solution of system (1.5) in the form us = u~(0(x, t)), va = a~(0(x, t)), where 0(x, t) is 
some function satisfying the equation 

b t  + c(0) = 0 

This solution represents a Riemann wave. System (1.5) becomes a system of ordinary differential 
equations in duJdO: 

2.dui du2 
( H I l - C ) - - ~ + H t 2 - d -  ~- = 0 

duj 2 du2 
HI2" ~ + (H22- c ) - ~  = 0 

(2.1) 

The system has a non-trivial solution if [Hal ~ - 8a13k [ = 0. The roots of this equation are the eigenvalues 
kl and L2 of the matrix IIH~ II (they are identical with the squared velocities of the Riemann waves: 
~.,~ = c~), and its eigenvector determines at each point Ul, u2 of the phase plane the direction of the 
integral curves (ICs) of the desired solution. 

The characteristic velocities are computed from the formulae 

z = f _ 2 ~ z ( u Z l + u 2 2 ) : v _ l ~ z l Q  ~'1,2 = Cl,2 

Q = J uI-ul + 2 c u , /  + 4u2(u I - G )  2, G = g/~ 
(2.2) 

The sign of the root in formula (2.2) will be taken in such a way that e 1 < c 2. The Riemann waves 
corresponding to characteristic velocity cl will be called slow, and the others, corresponding to c2, fast. 
The choice of sign in formula (2.2), hence also the behaviour of the solution, depends on the sign of 
~:. To fix our ideas, all further reasoning will be carried out for ~; > 0 and the upper sign in formula 
(2.2) will be taken for slow waves (Cl), the lower sign for fast waves (c2). For media with ~ < 0 the 
investigation may be carried out in analogous fashion; the results will be given at the end of Section 41 

System (2.1) gives equations for the directions of two families of ICs, which are orthogonal because 
of the symmetry of the matrix [H~I [l: 

2 2 
du e ~L-- HII u l - u 2 - 2 G u l  + Q  
du  I H12 2U2(U 1 - G) (2.3) 

This equation depends on the parameters of non-linearity ~: and anisotropy g only through their 
quotient G = g/~c. One can thus change scale on the ul and u2 axes, that is, define ul = u]G, u2 = u'2G, 
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obtaining, in terms of the new variables, a universal form of the equations of the ICs, independent of 
K and g (the prime will be omitted from now on): 

2 
du.._~ 2 = u~ - bt 2 - 2u  I --- Ql 

du I 2U2(U 1 - 1) 

J 2 2 01 (u l_  2 2 = U 2 + 2 U l )  + 4 U 2 ( U  1 - 1 )  2 

(2.4) 

The characteristic velocities in these variables are 

~',,2 = f-IcG2{2(u~+u~)+-Q,} (2.5) 

and, unlike the ICs, they behave differently for different signs of ~. 

3. I N T E G R A L  CURVES IN THE PHASE P L A N E  u> u2 

The symmetry of the elastic potential mentioned in Section 1 makes formulae (2.4) for the ICs 
symmetrical relative to rotation through the angle 2n/3 and relative to the ul axis, so that it will suffice 
to investigate the phase portrait of the ICs in the ua, u2 plane inside an angle n/3. 

If u~ > 1 (i.e. the anisotropy parameter g is very small), Eqs (2.4) define circles about the origin for 
fast waves and rays for small waves, as in an isotropic medium. In the general case, the curves (2.4) in 
the ul, u2 plane have four singular points with coordinates O(0, 0),A(-2, 0), B, C(1, _+q-3) (Fig. 1). 

Let us follow the slopes of the integral curves (2.4) on straight lines passing thro__ugh the singular 
points A, B and C. On the segment of the straight line u 1 = 1 in the range [ u2 [ < ~ 3, that is, on the 
side BC of the triangle, we obtain (du2/dul)~ = 0 for slow waves (subscript s) and (du2/dUl) f = ~ for 
fast waves (subscript f). Thus the side BC of the triangle is an integral curve of the family of fast waves, 
and, by symmetry, the same holds for the other sides, AB and AC. The ICs of the slow waves are 
orthogonal to the sides of the triangle. At the points where they intersect BC the functions u2 = u2(ul) 
representing the ICs have an extremum, namely, a minimum. By symmetry, the same is true for the 
ICs of the slow family at their intersections with the other sides of the triangle, AB andAC. In the domain 
[u2[ > "J3, on the straight line b/1 = 1, on the contrary, 

(du2]dUl)s = 0% (du2]dUl) f = 0 

and the extension of the side BC (and the other sides as well) into the external domain (relative to the 
triangleABC) serve as ICs of slow waves; the ICs of the fast family are orthogonal to them, and at their 
points of intersection with the straight line ul = 1, the functions u2 = u2(ul) representing them have a 
maximum. 

It can be shown in an analogous fashion that the segment of the ul axis between the singular points 
A(-2, 0) and 0(0, 0) is an IC of fast waves and all the rest of the u 1 axis is an IC of slow waves. By 
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symmetry, the other segments connecting the origin to the vertices of the triangle belong to the family 
of fast waves and their extensions to the family of slow waves. The solid lines in Fig. 1 represent the 
rectilinear ICs of the family of fast waves, and the dashed lines those of slow waves. 

Let us consider the field of ICs around the singular points. In the neighbourhood of O we may assume 
that ua ~ 1 and replace Eq. (2.4) by the approximation 

, u2 u, + 4  
d u  I u 2 

(3.1) 

Integration using polar coordinates r, 0 (ul = rcosO, u 2 = rsinO) yields 

3 C 
r = (cos0 q: 1)(cos0 + 1/2) (3.2) 

where the upper (lower) sign is chosen for slow (fast) waves. 
Thus, the ICs of the two families are mutually orthogonal and are almost hyperbolae with asymptotes 

along the rays 0 = 0, 0 = ___2rt/3 for slow waves and 0 = +_~/3, 0 = -~ for fast waves (Fig. 2). 
Of the remaining singular points, it will suffice (by symmetry) to consider just one, say A(-2, 0). 

Transform to a coordinate system x, y attached to that point, putting Ul = x - 2, u2 = y, and consider a 
small neighbourhood of the point/ l .  The equations of the ICs (2.4) in the linear approximation are 

dy /dx  = ( -  x T- ~x  2 + 9y2) / (3y)  (3.3) 

As always, the upper (lower) sign in the formula corresponds to slow (fast) waves. The ICs of both 
families may reach this singular point only in directions for which the radius vector coincides with t__he 
tangent to an IC, y/x = dy/dx. Hence, using Eq. (3.3), we obtainy = 0, that is, the ul axis, andy = +--~3x, 
that is, the directions of the sides of the triangleAB andAC and their extensions beyond the vertexA. 
The ICs of fast waves, going along the ul axis, leave the singular pointA and reach the other singular 
point O. 

In the domain adjacent to the ul axis we may assume that x2 ~> 9y 2. Then we obtain for slow (fast) 
waves in the neighbourhood of / t :  

y = +_Cx 3/2 in the domainx < 0 (x > 0), i.e. for ul < -2(ul > -2), 

3 2 C in the domain x > 0 (x < 0), i.e. for ul > -2(ul < -2), x 2 + ~Y = 

where C is a constant of integration; the ICs reach the singular point as tangents to the ul axis. ICs 
y = +_Cx 3/2 leaving the singular point / l  remain inside the angle between the rays emanating f rom/ l  at 
angles ___rt/6 to the ul axis. Each IC of the fast family then reaches another singular point B or C, as 
tangent to the ray going from the origin to that point. 
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The straight lines bounding the aforementioned angle are also ICs and pass through the singular 
points, forming the triangle ABC. The behaviour of the neighbouring ICs may be observed by taking 
as an example the neighbourhood of the straight line ua = 1. Set u] - 1 = x, where x is assumed to be 

small. For the fast waves we obtainx = +C'f]  3 - vZl. On approaching the singular points, these curves 
become tangents to the rays going from the origin to the singular points, or adhere to arcs of ellipses 
going around the singular points. The overall phase portrait of the ICs in the ul, u2 plane is shown in 
Fig. 3 (slow waves) and Fig. 4 (fast waves), 

4. T H E  C H A N G E  OF T H E  P E R T U R B A T I O N  P R O F I L E  IN 
A R I E M A N N  WAVE 

Since the characteristic velocities % (2.3) depend on the solution us, it follows that as a disturbance 
propagates, its form will change. If ca increases as us varies along its IC, the wave has a tendency to 
reverse direction. We indicate (by the arrows in Figs 3 and 4) the directions of increasing c along ICs 

2 that lead to a reversal of waves. Instead of the characteristic velocities, we will use their squares )~ = ca. 
Denote  the element of length on an IC by dl. We have to determine the sign of d3.ddl and plot the 
changes in its sign in the field of the IC in the ul, u2 plane. To fix our ideas, let us assume that the non- 
linearity parameter  is positive, ~: > 0; if ~: < 0, the directions of the arrows in the figures should be 
reversed. 

Instead of d).Jdl, we can compute the quantity 

d~,c~ ~ ,~  t)~,ctdu2 
du I = ~ + ~u2duz 
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along an IC, using formulae (2.4) and (2.5). We have 

d~ ' l ,  2 _ -1 (  2 2 
du I q ( ~ - - 1 )  {(q(3ul  + 3u2 -14u l  + 2)+ 

_+(3(u 12+ u2 )22+ 8(2u31+2u~+2u~_u,_5u,u22)))  } 

J 2 2 2 -- )2 q = ( u 2 2 - U l )  +4U2(U I 1 

(4.1) 

These formulae are suitable everywhere, except in domains where the direction of the ICs is nearly 
parallel to the u2 axis. There formulae (4.1) must be replaced by similar formulae for 

d~.eL O~LeL O~adu 1 

du 2 - ~U 2 + ~u Idu 2 

We will first indicate the direction in which 9~1 increases on an IC of the family of slow waves. Along 
the u2 axis, that is, for ul = 0, we have d)~l/dul > 0 for all ICs of the slow family. For u2 = 0 (along the 
ul axis, which for ul < -2 and ul > 0 is itself an IC) 

q = IUI(Ul + 2)ld~,l/dU l = -2K(1 + 3ut) 

that is, d)~l/dU 1 < 0 for ul > 0 and d)~l/dt q > 0 for 0 > ua > -2. In the range -2 < b/1 < 0, where the 
ICs are orthogonal to the u 2 axis, 

d~,l/dl = d~,l/dU 2 = - B u  2 

where B > 0 is a coefficient. Thus, the segment -2 < ul < 0 is a curve across which d~Jdl  changes sign; 
in the upper half-plane, d)~l/dl < 0, and in the lower half-plane, d)~l/dl > 0. By symmetry, the other 
segments of the rays OB and OC are also lines across which d)~l/dl changes sign. 

On a line connecting singular points, such as B and C, we obtain for Ul = 1, [Uzl < 

d~q/du I = - 8 ~  < 0 

that is, on no side of the triangle A B C  does d)~l/dl change sign. On the extensions of the sides beyond 
the vertices of the triangle ( l u21 > ~-3) 

d~.l/dU 2 = - 6 1 ¢ u  2 

that is, d)~l/dU 2 < 0 above B and d)~l/dU 2 > 0 below C. Thus, )"1 increases along its ICs in the direction 
of the origin. A change in the direction of increase occurs across segments of the rays connecting the 
origin to the singular points. 

For the family of fast waves, at points where their ICs intersect straight lines passing through the 
singular points A, B and C, say the straight line ul = 1, we obtain in the domain l u21 > 

d)~21du I = -20~ < 0 

The same straight line ul = I with l u2l < ~-3 serves as an IC of the family, and on it 

d)~21dl = d)~z/du 2 = -6K:u 2 

which means that across the ul axis the derivative d)~Jdl changes sign, from negative in the upper half- 
plane to positive in the lower half-plane. In the neighbourhood of the entire abscissa axis, except for 
the segment -2 < u I < O, 

d)~2/dl = d~2]du 2 = B u 2 ( 1 - 4 u l ) ,  B > 0  

Thus, the entire ul axis, with the exception of the segment indicated (and together with it all rays to 
singular points), is a curve across which the direction in which )~2 increases is switched. The sign ofd)@dl 
changes from minus in the upper half-plane to plus in the lower half-plane on the segment ul > 1/4 of 
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the axis, and conversely on the other segments 0 < ul < 1/4 and u 1 < -2. In the interval -2, 0 of the 
abscissa axis, which runs along an IC, 

d),2/dl  = - 2 ~ : ( 3 u  1 + 1) 

and the change of direction of increasing )~2 occurs at the point ul = -1 /3 .  
Thus, the lines across which d)~2/dl changes sign are the medians of the triangleABC from the singular 

points and their extensions beyond the triangle, with the exception of the segments from the vertices 
to the origin. In addition, there is one more sign-change curve in the neighbourhood of the origin - a 
closed curve around O, intersecting the medians at a distance 1/3 on the side of the vertex and 1/4 o n  
the side of the base. The equation of that curve may be written, for example, as d)~Jdul = 0. The 
directions in which the characteristic velocities c 2 = )~1 and c 2 = )~2 increase are shown by arrows for 
the Slow and fast Riemann waves, respectively, in Figs 3 and 4 for media with ~: > 0. The dashed lines 
are those across which d)~Jdl changes sign. On an increased scale, the closed curve across which the 
velocities of fast waves change sign is shown in Fig. 2 by a thin contour. The arrows indicate the direction 
in which the characteristic velocity increases. 

2 and du2/dul is assigned to the fast waves, If ~c < 0, the upper sign everywhere in the formulae for Cl, 2 
and the lower sign to the slow waves. The form of the ICs in the u2, Ul plane remains as before, except 
that Fig. 3 is the phase portrait of the fast waves and Fig. 4 that of the slow waves, and the directions 
of the arrows should be reversed. 

We recall that the whole portrait in the ul, u2 plane was constructed in normalized variables u'JG, 
where G is a small quantity. Rg_m_mrning to the physical variables, one sees that the singular pointsA, B 
an C lie at a small distance 2,/G from the origin, and all the complexity of the behaviour of the ICs 
appears in the domain of small ul, u2. 

5. R I E M A N N  W A V E S  I N  A N  E L A S T I C  C U B I C  C R Y S T A L  

The complex pattern of the behaviour of the ICs and the large number of singular points is due to the 
presence of a slight anisotropy in the non-linear elastic medium. But if the anisotropy is not small and 
the coefficient g of the cubic powers in formula (1.4) is finite, the non-linear term with ~: may be ignored. 
At ~: = 0 we obtain the problem of low-amplitude non-linear waves propagating along the principal 
diagonal in a cubic crystal. The expressions for the characteristic velocities and the equations of the 
ICs are 

cl,2 = )~1.2 = f t:2g +u 2 

2 
du  2 u I + + u2 
m 

dul u 2 

Such ICs were represented above in the neighbourhood of the singular point O(0, 0) by Eq. (3.1), 
as shown in Fig. 2 in the neighbourhood of the origin. Now, however, this pattern acts throughout the 
Ul, u 2 plane. The quantities )~1 and )~2 vary in the same way as inside the closed curve of sign change 
around the origin (Figs 3 and 4). 
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